
1 of 8
Statement A: Approved for public release; Distribution is unlimited.

EVOLUTION OF THE SOFTWARE COMMUNICATION ARCHITECTURE STANDARD
Kevin Richardson, Chalena Jimenez, Donald R. Stephens

Joint Program Executive Office (JPEO), Joint Tactical Radio Systems
San Diego, CA

ABSTRACT

Three primary objectives of the Joint Program
Executive Officer (JPEO) Joint Tactical Radio System
(JTRS) are: a) reduce time to field capability, b) improve
interoperability between services, and c) decrease radio
production costs. The Software Communications
Architecture (SCA) specification is the architectural
framework for all JTRS software artifacts that was
created to maximize software application portability,
reusability, and scalability while providing the flexibility
to address domain specific requirements.

SCA version 1.0 was published in 2000 and the last
major release (version 2.2.2) was published in 2006.
Since release of version 2.2.2, only minor enhancements
have been made to the specification, which have been
targeted towards addressing items of immediate concern
to the development of the Increment 1 JTRS products.
Over the course of the last two years technologies have
evolved and there have been many SCA related lessons
learned through the development of JTRS products such
as Ground Mobile Radio (GMR). JPEO JTRS asserts
that the SCA will continue to evolve so that JTRS
products meet the current and emerging needs of the
next generation warfighter.

To address the requirements of the JTRS
stakeholders, JPEO JTRS has initiated the development
of a new SCA release. The overriding philosophy behind
this revision is to position the SCA as a specification that
is comprehensive yet flexible enough to provide a
technical foundation for multiple generations of JTRS
and industry products. To accomplish this flexibility, the
proposed SCA enhancements will migrate the
specification towards a technology independent
representation and away from the current dependence
on Common Object Request Broker Architecture
(CORBA) and eXtensible Markup Language (XML)
Document Type Descriptor (DTD) files. A second
feature will introduce optional elements within the
specification so that compliant products may be
developed which better map to the functional and
resource requirements of a wide array of target
platforms.

Origin of the SCA

The JTRS Enterprise Business Model is based on
competing vendors for production of all Joint Tactical

Radio (JTR) sets and interoperability. These attributes
initiated the decision for waveform portability between
radio sets. To achieve this, the JTRS Program Office
(JPO) established the SCA.

The SCA was initially developed in steps [1]; in the
first step three consortia provided studies on the
architecture. The studies were similar, and in the next
step the technical evaluation team incorporated 'golden
nuggets' from the studies into an award to write the SCA
standard, implement the SCA and provide a proof of
concept effort. The final steps provided additional SCA
validation and proof of concept efforts.

The primary architecture development areas were a)
modular functional breakout, b) well-defined functional
entities, c) rule sets for functional entities and
implementation guidance, d) open standards, e) domain
independence, f) system control, g) software
development and distribution, and h) interface
descriptions. With this guidance, the consortium began
development of the SCA and delivered version 0.1 in
December 1999. The early SCA versions contained the
SCA “Core Framework” along with its appendices, the
Application Program Interface (API) Supplement which
started the process of defining common APIs that could
be shared across JTRS products and the Security
Supplement which introduced a collection of
requirements which could be leveraged to develop DoD
communications products. The original SCA software
structure is shown in Figure 1 Original SCA Software
Structure.

Many refinements and versions followed, with the
SCA 2.2 specified for the first radio product release.

Figure 1 Original SCA Software Structure

2 of 8
Statement A: Approved for public release; Distribution is unlimited.

SCA 2.2.2 deprecated the API Supplement and
moved the API standardization and definition processes
to a different development initiative within the JPEO. In
addition, this SCA version did not incorporate the
Specialized Hardware Supplement that was defined in an
earlier SCA release. Many of the Specialized Hardware
Supplement capabilities were captured within the JTRS
Interface Control Working Group (ICWG) Approved
JTRS Standard APIs [4]. The Security Supplement was
also deprecated in favor of existing specifications. This
series of changes was made so that the SCA could
maintain its position as a specification that could be
leveraged by both government and industry. When SCA
elements were removed great care was take to ensure
that JTRS Products could still extend the fundamental
architecture to provide similar functionality.

In December 2006, an extension was added to
introduce additional capabilities requested by the radio
programs. The SCA 2.2.2 extension provided a
mechanism to optimize application deployment on
multi–channel environments. It also supported the
definition and deployment of non-SCA services (i.e.
services other than Log, FileSystem, Event, and
Naming). The extension introduced new requirements
for the SCA 2.2.2 Core Framework but only for those
radio platforms that wanted to take advantage of this
additional capability. The concept utilized for this
extension was similar to the design pattern used for API
extensions [3].

In December 2007, the Application Environment
Profile (AEP) amendment updated the Portable
Operating System Interface for Unix (POSIX) profile to
incorporate more lessons learned from the radio
programs and current computing standards.

Current SCA

Although the word architecture is part of its name, the
SCA is not a complete architecture – it is considered an
architecture layer or framework for a software defined
radio. The SCA consists of specific base interfaces,
operating environment specifications, design patterns,
and specific radio utilities as depicted in Figure 2 The
Many Aspects of the SCA.

Figure 2 The Many Aspects of the SCA

The SCA provides one component of the end
architecture that is developed for a software defined
radio. The JTRS program has supplemented the SCA
with a collection of APIs that can be used to extend the
SCA component based framework. The collection of
SCA and JTRS APIs provides a more fully refined
definition of a complete host environment to execute
portable waveforms. The fact that the SCA is not a full
architecture is a key attribute of the SCA and not a
weakness. This permits the SCA to be incorporated into
the architectures of radios ranging from a small battery-
operated sensor to a multi-channel, reconfigurable
airborne radio platform as illustrated in Figure 3 JTRS
Radios Enabled by the SCA.

Figure 3 JTRS Radios Enabled by the SCA

Operating Environment

The SCA is intended to be applicable for a
multiplicity of communications devices; supporting the
requirements of a wide range of military, civilian and
commercial platforms. The JTRS program desires one
waveform to be portable across all the radios illustrated
in Figure 3 JTRS Radios Enabled by the SCA.

To achieve this, the waveform developer must be
limited to a subset of operating system and programming
language features. Similarly, the radio set must be able
to support these exact functions and capabilities with its
processor and battery.

3 of 8
Statement A: Approved for public release; Distribution is unlimited.

The AEP of the latest SCA release tailors more than
500 specific real-time operating system functions that
must be supported by an SCA-compliant product as
illustrated in Figure 4 Portion of POSIX Functionality
Specification. The AEP is a hybrid POSIX real time
profiles PS 52&53, however it is supported by multiple
real-time operating systems vendors. The SCA
specification allocates the Real-Time Operating System
(RTOS) requirements to the operating environment so a
JTRS product developer has the option of supporting the
AEP requirements via commercially available and
proprietary products. The AEP requirements are only
applicable to General Purpose Processing (GPP)
processing elements as POSIX compliant
implementations are not as ubiquitous for Digital Signal
Processing (DSP) processors. JTRS has published
guidelines for non-GPP processing elements, but not
specified run time operating environments.

Figure 4 Portion of POSIX Functionality Specification

The CORBA has been specified from the very early
versions of the SCA. CORBA provides support for two
important SCA attributes; distributed processing and a
component model. The Object Management Group’s
(OMG) Interface Definition Language (IDL) is used for
the base SCA interfaces as well as the separately defined
JTRS APIs. Software tools exist to generate software
code skeletons from the IDL definitions that can be
populated with behavior logic.

Because many software defined radios have multiple
processors, the SCA addresses interprocessor
communication. Without such a specification, it
becomes impossible to achieve waveform portability
across the product line depicted in Figure 3 JTRS Radios
Enabled by the SCA.

CORBA provides a set of transport protocols, an
intermediate data representation and a mechanism to
disassemble and reconstruct method invocations in
support of this distributed procession requirement.

Three additional services are provided by CORBA,
the naming service, event service and log service. The
existence of these services relieves the SCA from having
to define these components. The OMG naming service
performs the function of a telephone book for software
and hardware adapters within the radio set. A software
component registers with the naming service and then
other components can query the naming service to obtain
the communication address of that registered
component. The OMG log service standardizes all
logging within the radio. Components can log events and
messages following the open standard format and the
radio set infrastructure transparently assumes
responsibility for the lifecycle of the component. The
OMG event services provides a decoupled
communication mechanism for software components to
signal either the radio set or other software components
using a publish-and-subscribe open architecture
interface.

Component Model and Dynamic Instantiation

In addition to the component model provided in the
CORBA specification, the SCA provides a dynamic
instantiation and connection of software radio
components as illustrated in Figure 5 Dynamic
Instantiation and Connection. The SCA does not assume
a static configuration of components. When a radio
powers on, the software components in Figure 5
Dynamic Instantiation and Connection are launched by
the radio's boot loader, but there is no connectivity
between these components and they have no a priori
knowledge of how to communicate with each other.

4 of 8
Statement A: Approved for public release; Distribution is unlimited.

Figure 5 Dynamic Instantiation and Connection

The individual components expose CORBA
interfaces on ports, and the Domain Management
interfaces (Domain Manager, Application Factory and
Device Manager) read XML files that provide the names
of the port connections for all of the software
components. Similar to a hardware schematic diagram,
the XML files permit the Domain Management
interfaces to initiate connections between all of the radio
components. When a waveform is launched, the
Application Factory will perform a similar connection
activity for the waveform components, shown as
resources in Figure 5 Dynamic Instantiation and
Connection. It will also initiate connections between the
radio set components and the waveform components as
specified in the waveform's XML files.

The SCA also specifies a set of base interfaces
illustrated in Figure 6 Base Interfaces Established by the
SCA. Because every software component and
corresponding hardware interface is required to
implement a CF::Resource interface, the SCA
establishes a common management and control
mechanism for the radio set.

+getPort()

<<interface>>
PortSupplier

+initialize()
+releaseObject()

<<interface>>
LifeCycle

+configure()
+query()

<<interface>>
PropertySet +runTest()

<<interface>>
TestableObject

+start()
+stop()

-identifier

<<interface>>
Resource

+allocateCapacity()
+deallocateCapacity()

-usageState
-adminState
-operationalState
-softwareProfile
-label
-compositeDevice

<<interface>>
Device

+startTone()
+toneType()

<<interface>>
AudioControl

Figure 6 Base Interfaces Established by the SCA

Success of the SCA

JTRS is experiencing great success in porting new
networking waveforms such as Soldier Radio Waveform

5 of 8
Statement A: Approved for public release; Distribution is unlimited.

(SRW) and Wideband Networking Waveform (WNW)
to new radios. The recent Airborne, Maritime Fixed
(AMF) radio was contracted without any waveform
development. The contractor will download JTRS
software from the JTRS Information Repository and
refactor it slightly for that set's unique mission
requirements and configurations; instead of completely
re-developing the waveform.

Goals for SCA Evolution

The JTRS ICWG is currently developing proposals to
evolve the SCA from the current SCA 2.2.2 version. The
ICWG is composed of technical and programmatic
representatives that span the entire spectrum of JTRS
Programs, development contractors and key
stakeholders. Figure 7 Different SCA Requirements
From Different Form Factors illustrates some of the
opposing requirements of the SCA for different radio
form factors and missions. The battery-powered sets
need to conserve battery life; hence any reconfigurability
that costs memory or CPU cycles is unnecessary and
counter to mission requirements. Radio sets that have a
prime power source can utilize the flexibility and
reconfigurability of the current SCA. An expanded
feature set is desired, especially for the radio sets that
require extensive platform integration such as airborne
radios integrated into an airframe's aviation suite.

SCA Evolution Process Overview

The ICWG has had a key role in defining the scope of
the SCA enhancements, but the issues that will be
addressed are a byproduct of lessons learned from SCA
compliant products developed by JTRS Programs,
Industry and Academia. Throughout the history of the
JTRS Program the Program Office has made it a priority
to maintain a close relationship not only with its product
developers but also with industry and academia through
forums such as OMG and the Software Defined Radio
Forum (SDRF). In addition to maintaining contact it has
also been a priority for the program to capture and
record data regarding areas the SCA could be enhanced
or expanded.

One of the first activities in the evolution process was
to consolidate the outstanding enhancement requests and
then augment those with suggestions from the ICWG
membership. After that point an SCA Program Team
was established whose responsibility is to manage and
execute the development of revised SCA content. The
SCA Program Team is comprised of individuals who are
representative of the entire ICWG membership. Those

individuals are required to be empowered to represent
the interests of their constituents, identify appropriate
resources to develop individual enhancements and
critique and refine the issue resolutions proposed by
other SCA Program Team members.

The SCA Program Team prioritized the set of
approximately 60 enhancement proposals. The items
were prioritized according to their perceived benefit to
the end users of the SCA. The prioritization was not
based on the extent of the modification, so highly rated
changes could simply require a few wording
modifications or entail changes that affect major
philosophical positions.

The result of the prioritization activity was the
selection of roughly 20 enhancement proposals that were
identified as “must have” topics to be investigated as
candidate additions for the next SCA version. The
remainder of the paper explores some of the
enhancement proposals that will be considered during
the SCA evolution process.

Candidate SCA Enhancements

In addition to some of the attributes identified in
Figure 7 Different SCA Requirements From Different
Form Factors, an objective of the SCA evolution will be
to maintain backward compatibility for products
developed for the existing SCA specifications since the
JTRS Information Repository contains 4.5 million lines
of source code compliant to SCA 2.2.2.

Figure 7 Different SCA Requirements From Different

Form Factors

To support the opposing requirements of Figure 7, the
revised SCA will be more configurable to allow for a
wider range of products to be viewed as compliant. The
SCA will identify more compliance points that will
allow for multiple views of what constitutes a
conformant implementation. For example an existing
SCA Device is a CF::Resource that fully supports a state
model and has the ability to manage allocation

6 of 8
Statement A: Approved for public release; Distribution is unlimited.

capacities. A plausible system architecture could include
a Device that does not need to have the ability to manage
capacities. Perhaps the device in question is used as a
communication relay that is used to transition data
messages between communications endpoints. For this
scenario, the system designer may have determined that
the manner in which the target system aggregates data
and sends it across the relay is sequential in nature and
consequently it would be impossible for the capacity of
the device to be exhausted. An SCA 2.2.2 compliant
device would have to provide a full implementation of
the Core Framework capacity management operations,
allocateCapacity() and deallocateCapacity() which have
several semantic requirements for expected behavior and
exception cases. The revised specification will introduce
capacity management as a configurable capability. If a
device needs to be a capacity manager then it can
incorporate the capability and be subject to the existing
Core Framework requirements, however in cases such as
the one described above, the framework will provide a
mechanism to omit the capability and thus the device
will not be subject to those requirements. By following
this pattern, existing implementations can maintain their
compliance with little impact, but the incorporation of
the additional flexibility will allow the framework to be
applied in a manner that will be better aligned with the
target system requirements.

Requirements Analysis and Allocation

SCA 2.2.2 combines requirements belonging to radio
set providers (i.e. Operating Environments), and
Waveform Application developers. The specification
attempts to categorize the requirements through
terminology such as Base Application and Base Device
interfaces; however the distinctions may be lost on all
but the savviest JTRS developers. The revised
specification will be refactored so the responsible owner
of any particular requirements is clear and precise. The
allocation can be coupled with the compliance
declarations so that even a casual reader of the
specification should be able to easily identify which
portions of the document are applicable to their desired
products. This will aid certification testing and also
improve the productivity of developers since
requirements ownership will be well defined.

Requirements will be examined to determine whether
they are critical or 'nice-to-have'. Those belonging to the
latter category will be dropped. The emphasis of this
activity is specifically targeted towards optimizing the

system so that it better aligns with the constraints levied
by real time systems.

CORBA Neutral Migration

Most Waveform Application developers are
comfortable with the AEP specifications, particularly
since they have been recently updated to the latest IEEE
standards. CORBA, however, may be costly in terms of
memory and CPU cycles for battery-powered sets. There
are other issues with CORBA such as its non-
determinism and its lack of compatibility with certain
secure computing principles.

Unfortunately, there is not a one-for-one replacement
readily available. Some technologies such as remote
procedure call (RPC) accommodate distributed
processing, but lack a component model. There are more
expressive technologies such as Simple Object Access
Protocol (SOAP) but they are not compatible with real
time systems and in some cases may require
development of a number of the services that are
included within most Object Request Broker (ORB)
implementations.

A great deal of the value of the SCA comes from the
abstractions that are embedded within the framework
and the manner in which they can utilize commercially
available open technologies to facilitate the development
of portable Software Defined Radio (SDR) systems.
Hence, one of the major benefits gained from SCA
development is the specification of the common model.
Once the model is captured then the specification can be
tailored at many levels to emphasize whatever is
important to the tailoring organization. A program could
give its developers the latitude to use whatever
technologies best suited their product as long as they
preserved the SCA model, the program could dictate the
complete set of platform specific technologies to be
leveraged within their program, or there could be an
intermediate solution anywhere between those two
endpoints. This approach accommodates existing SCA
compliant implementations as well that those which may
choose to migrate to CORBA/e, the nominal successor
to minimum CORBA.

The IDL representation will be preserved as the
technology specific standard way to express the
specification’s interfaces; however there is an
expectation that as the revised specification matures, a
collection of mappings will be developed and
standardized to transform that neutral representation into
additional technology specific representations.

7 of 8
Statement A: Approved for public release; Distribution is unlimited.

Implementation Guidance

Many of the APIs in the SCA specify exception
processing. However, the SCA does not mandate native
C++ exception handling. Although convenient because it
is a feature of the language, many embedded
programmers shun it because of the memory and CPU
costs. Similarly run-time type information (RTTI) and
dynamic casting are features of C++ that are very costly
in resource-constrained, embedded platforms.

Waveform developers need guidance on these
programming language features. Without guidance, a
Waveform Application developer could assume a
resource-rich platform and produce a Waveform
Application that would be unable to execute on the less-
capable radio sets as depicted on the left-hand side of
Figure 7 Different SCA Requirements From Different
Form Factors.

Similar to the technology specific mappings that will
be associated with the SCA, many of these guidelines
will be specific to a particular technology representation.
The JTRS program intends to develop this type of
guidance, but it will beyond the scope of the SCA.

Optional Framework Controls

The smaller, resource-constrained radio platforms
may have less need for the existing capabilities of the
SCA Framework Control Interfaces, particularly those
that provide dynamic instantiation capabilities. Such
aspects will be addressed during the detailed analyses
that will be executed as part of the evolution process.
The two most likely outcomes for this evolution are for
the capabilities to be provided in the SCA via an
extension mechanism similar to that provided for the
APIs [4], permitting radio set developers to select the
elements most applicable to their mission. The second
option would be for the functionality to be provided via
a configurable capability expressed within the
framework.

Evolving The Domain Profile

The SCA Domain Profile is currently described by a
set of XML DTD files. There is current investigation
into whether we should move from the use of DTDs to
XML Schema (XSD) files to provide more flexibility to
the user. XML Schema files provide an alternate but
equivalent mechanism to validate the identity,
capabilities, properties, and inter-dependencies of
domain components. In addition, the XML Schema
provides added features that may be of use when

evolving the SCA. There are minimal changes that will
need to occur to validate existing component files with
XSD verses DTD files. Further work is underway to
validate the XML to XSD mapping and to determine if
there are any impacts with using the files.

The SCA Program Team will also investigate
whether or not platform independence will be extended
to the descriptor files as well. If that ends up as the case
then descriptor formats beyond the XML based
alternatives will be considered for inclusion and the
XSD might be established as the standard from which
future technology specific mappings are spawned.

Conclusion

The SCA has gone through a number of different
stages through its existence. The SCA has proven itself
as a flexible architectural framework that has been used
in the development and operational deployment of a
variety of SDR products. The JTRS program is
undertaking an effort to extend the lifespan of the SCA
far into the next generation of configurable,
programmable SDR communication devices. In addition
to the topics that were addressed in this paper other
topics such as the role of Services within and SCA
compliant implementation and enhancements to the
application deployment processes will also be addressed
as part of the evolution activities. In order to achieve that
objective JPEO JTRS is taking a series of actions
targeted towards emphasizing the framework’s common
and reusable strengths. Qualities such as increased
configurability and CORBA neutrality are critical
towards increasing the flexibility of the specification
such that it can accommodate the breath of functional
and non-functional requirements levied by future
communications devices.

References

[1] J. Place, D. Kerr and D. Schaefer Joint tactical radio
system, MILCOM 2000 - IEEE Military
Communications Conference, no. 1, October 2000,
pp. 209 – 213

[2] Donald R. Stephens, Brian Salisbury, Kevin
Richardson, "JTRS infrastructure architecture and
standards", MILCOM 2006 - IEEE Military
Communications Conference, no. 1, October 2006
pp. 3481-3485.

[3] Donald R. Stephens, Cinly Magsombol, Chalena
Jimenez, "Design patterns of the JTRS
infrastructure", MILCOM 2007 - IEEE Military

8 of 8
Statement A: Approved for public release; Distribution is unlimited.

Communications Conference, no. 1, October 2007
pp. 835-839.

[4] Cinly Magsombol, Chalena Jimenez, Donald R.
Stephens, "Joint tactical radio system—Application

programming interfaces", MILCOM 2007 - IEEE
Military Communications Conference, no. 1,
October 2007 pp. 855-861.

